RSA Speedup with Chinese Remainder Theorem Immune against Hardware Fault Cryptanalysis

نویسندگان

  • Sung-Ming Yen
  • Seungjoo Kim
  • Seongan Lim
  • Sang-Jae Moon
چکیده

This article considers the problem of how to prevent the fast RSA signature and decryption computation with residue number system (or called the CRT-based approach) speedup from a hardware fault cryptanalysis in a highly reliable and efficient approach. The CRT-based speedup for RSA signature has been widely adopted as an implementation standard ranging from large servers to very tiny smart IC cards. However, given a single erroneous computation result, a hardware fault cryptanalysis can totally break the RSA system by factoring the public modulus. Some countermeasures by using a simple verification function (e.g., raising a signature to the power of public key) or fault detection (e.g., an expanded modulus approach) have been reported in the literature; however, it will be pointed out in this paper that very few of these existing solutions are both sound and efficient. Unreasonably, in these methods, they assume that a comparison instruction will always be fault-free when developing countermeasures against hardware fault cryptanalysis. Researches show that the expanded modulus approach proposed by Shamir is superior to the approach of using a simple verification function when other physical cryptanalysis (e.g., timing cryptanalysis) is considered. So, we intend to improve Shamir’s method. In this paper, the new concepts of fault infective CRT computation and fault infective CRT recombination are proposed. Based on the new concepts, two novel protocols are developed with rigorous proof of security. Two possible parameter settings are provided for the protocols. One setting is to select a small public key e and the proposed protocols can have comparable performance to Shamir’s scheme. The other setting is to have better performance than Shamir’s scheme (i.e., having comparable performance to conventional CRT speedup), but with a large public key. Most importantly, we wish to emphasize the importance of developing and proving the security of physically secure protocols without relying on unreliable or unreasonable assumptions, e.g., always fault-free instructions. In this paper, related protocols are also considered and are carefully examined to point out possible

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RSA with Chinese Reminder Theorem Immune to Fault Cryptanalysis

This article examines the problem of fast RSA encryption with Chinese Reminder Theorem (CRT) immune against hardware fault cryptanalysis. This type of RSA scheme has been widely adopted as a standard implementation in many applications ranging from large servers to tiny smart cards. However, single error in this scheme can totally break the whole RSA scheme by factoring public modulus. It will ...

متن کامل

Securing RSA against Fault Analysis by Double Addition Chain Exponentiation

Fault Analysis is a powerful cryptanalytic technique that enables to break cryptographic implementations embedded in portable devices more efficiently than any other technique. For an RSA implemented with the Chinese Remainder Theorem method, one faulty execution suffices to factorize the public modulus and fully recover the private key. It is therefore mandatory to protect embedded implementat...

متن کامل

CRT RSA Algorithm Protected Against Fault Attacks

Embedded devices performing RSA signatures are subject to Fault Attacks, particularly when the Chinese Remainder Theorem is used. In most cases, the modular exponentiation and the Garner recombination algorithms are targeted. To thwart Fault Attacks, we propose a new generic method of computing modular exponentiation and we prove its security in a realistic fault model. By construction, our pro...

متن کامل

Cryptanalysis of Multi Prime RSA with Secret Key Greater than Public Key

The efficiency of decryption process of Multi prime RSA, in which the modulus contains more than two primes, can be speeded up using Chinese remainder theorem (CRT). On the other hand, to achieve the same level of security in terms integer factorization problem the length of RSA modulus must be larger than the traditional RSA case. In [9], authors studied the RSA public key cryptosystem in a sp...

متن کامل

Fault Resistant RSA Signatures: Chinese Remaindering in Both Directions

Fault attacks are one of the most severe attacks against secure embedded cryptographic implementations. Block ciphers such as AES, DES or public key algorithms such as RSA can be broken with as few as a single or a handful of erroneous computation results. Many countermeasures have been proposed both at the algorithmic level and using ad-hoc methods. In this paper, we address the problem of fin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Computers

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2003